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1. Introduction

The dynamic environments to which weapon-vehicle systems, such

as those modeled by Andrews Ill, are subjected include steady state

harmonic excitation, shock and random e=itation. These occur as a

result of external stimuli such as atmospherically borne disturbances

(wind, wake acoustic noise, rotor tip vortex loading) and through

various weapon-vehicle interactions. In the problems of this project

random excitation is the rule rather than the exception. Thus this

report sumaries the probability toiques necessary for and their

application to the development of analytic methods for obtaining the

esponse of linear elastic auctures to certain classes of random

excitation.

This random vibration response analysis employs the normal

modes of a lumped parameter representation of a caplex system. The

random forcing functior at each ode (in tams of rspected value

and power s;ectral density) ra transformed to a set of modal forcing

functions. Then the response of each mode to a random forcing function

can be obtained using the modal transfer functions. Finally -he modal

responses ae transformed back to the physical plane. The results are

the statistical expected values (mean, root mean square, power spectral

density) of the displacements, velocities and accelerations of the

physical system.

.. . . . . . . .. . . . . . . . . . .



2. Basic Pwobabitity Ceacgpts

(a) Random Variable

Let x be a real nuber resulting from a measurmemnt and def inet

an ouvent E an 1"x is less than or eqgzal to X11 where X is a fixed

real number. Let the number o trials, out of the first N, in

which F. is observed, be r.. If the relative frequency nN/N tends

to a limit, whatever the value of I, that is

PrEx <X3 u nnN4r

exists for every real number X. then x is called a random variable.

Of the multiplicity of random variable classes two ae presently

of considerable use. The" are discrete and contizms random

variables. Our interest herein will be confined to the continuous

rand a variable which we conceive as having the possibility of taking

value over some interval. More precisely we want to be able

to *valuate the probability

Pr [Ix < x < x2] 3 a(X) I 2 - F(x) Ix a x (2)

aud we say x is a continuous random variable if F(x) is continuous.

Note that since F(x) is continuous than Iim Pr EX1 < x X21 =6,

that is continuous random variables have thle "odd" property that the

pbbit of takS any one sM ified valu. is zero.

The function F(N) is called a cumulatLve distribution function.

These ftactions have the following compn properties (a) 0 < F (x) < 11
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(b) F is a nondecreasing function of x; (W) (almost all)

urn FWxa 1, MJ&F' 0.

If the function F(x) is differentiable we define the nbability

dewitv function p(x) by

pWx =- d F(x)] (3)

and note that p(x), like F(x), r'present a propEty of the random

variable x. Indeed without knowledge of p(x) (or F(x)) the random

variable is coaputaionally ssantj&Jly useleas.

From the de.fnition of p(x) it follows that

x2
r. X, < X < X 2  X p(x) dx (4)

where X1 < X2

If x and y are -wo rendom variables the probabilities

Pr Ex c X3 and PrE y !.1] each exist. If Pr Ix <_X, y j Y] exists

for all X and all Y, the joint cmnulative distribution function of

ad is defined by the . jiation

X, y r Y a Pr Lx < X, y < Yl. (5)

If both x and y are continuous variables we define their joint

probability density function p (x,y) by

fRf p(x,y) dx dy x Pr [(x,y) in R). (6)

Here R is an; simply connected region of the x, y plane and

p(xoy) - 24 iX. (7)
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(b) Basic Properties

Two random variablc." x and y are mutually independent if the

dis4-ribution of -alues of x is unaffected by the value of y. and

vicA versa. As a consequence of this one finds that

F(xy) = F(x) F(y), p(xy) z p(x) p(y) (8)

for independent random variables x and y. This "product" property

greatly simplifies the computational details for independent

processes,

One of the principal features of a random process is its

non-repeatability. Therefore, for emxple, a time history of the

response of a vehicle to a rndom ecitation is not very meaningful.

Of more interest is the probability )f the severity of the structural

response to a given input occurring tlUoughout the tine interval of

interest. For a random process we seek the mean or expected value

of the response. If x is a continuouz random variable with probability

density fUw ion p(x) the exj~ecto d vale is defined by the equation

E(x) z B x p(x) dx (9)

where A and B define the range of values tnat x can assume. This

range is often (-, .) or (0, -). It is clear that E(x) is not a

function of x:

If f(x) is integrable tie expected value of f(x) is defined as

ELf(x)] IB f(x) p(x) dx. (10)A
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Some elementary but useful properties are immediately obvious. Thus

a) if a is constant Laf(x)] = AE[f(x)J

and ELf(x) + a] = E[f(x)] + a
n n

b) LL f x)J I Efj(x)] (
J 1 Jul

In particular we employ the results

B Bx
p (x) y $ y p (x,y) dy, p (y) I p (x,y) dx. (12)

A A
y x

Some less obvious properties include the following:

c) Af the xi, i i, 2,..., n are mutually independent

then EFR1 xl.J a E(x)
i~l ixl

d) E L(X-A)r] is the rth moment of x about A. If A = 0,

E (xr) is the rth moment about zero. If A = E(x) then

E [(x-A)r] = r (x) is the wth central moment. In terms

of this notation and E(x) we have

I2 v (x) = 2 (x) - EL(x -E(A)) 2]

= 'r x2] - LE(x)J 2  (13)

0) )2 measures the "variability of x".
3/2

V p3 /V 2  measures the sof the distribution of x.

.3 2

&4/,02 2  measures the kurtosis of ... e distribution

Additional definitions will be given where needed in the discussion.

Details of analysis and background are availahli in i11 er [2] or Parzen

[3].
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3. Multi-dopee of freedo SZstem

The governing equations of a linear lumped paraeter physical

system are

M+Cd+x F(t) (14)

Wh&e

h = [Mjil is the matrix of masses and inertias,

C = [CJi] is the matrix of dissipation,

M = [K i] is the stiffness matrix,

X = EX iI is the displacement column vector,

F = EF J is the column vector of forcing -'nct ions, and

At is well known these equations can be decoupled with the

result that

X z Ox (15)

where

S: [ij ] is the matrix of normal modes (each mode is a column),

and x z [xj I is the column vector of normal coordinates. Upon introducing

Eq. (15) into Eq. (14) and premultkplying by #T w, have

+ Tc,. + #TK , XTF (16)

whore T M# and T KO are diagonal ard #T C# is diagowl if the daL1-ing forces

are proportional to either stiffness or mass. In such cases the equation

of motion, Eq. 14, can be written in the uncoupled form

mR t ci + kx - f (17)

where a, c and k are diagonal matrices and f z TF.

Tht response of an n degree of freedom system becomes the problem

.. ..b



of finding the solutions x of the n uncoupled linear differential

equations. If the individual reLponses are Oesired it is debatable

whether the computation should be carried out in thi, form or in the

original form. Often knowledge of the nortel modes is highly desirable,

in which case the computation as outlined here is required.

4. Resonse of S~.le Normal Mode to Deterministic Foscing

The equation for the jth normal mode xj is

x + 2a. W~ +2 x *x f )/m (8
j 2j nj j nj j j ij

where

2O~~/(k 1/2 22k c/ (km) 9 % kj/mj

Next a(transfer) function Hj relating the modal forcing function

to the modal displacement x is sought in the form
j

x H f (t). (19)

If f (t) e then

-1
x j 2 2 '  4 iWt , Hj (W.)e i t . (120)

[wnj w + 2i W"njI

The utility of Mj (w) can be generalized to any forcing function that

can be obtained as the superposition of a nuAmber of harmonic forcing

functions. Thus if Fj (w) is one of the components cf the Fourier Series

representation of f (t) defined by

FJ() Z fj (t) a-'imtdt (21)

AiM the response toF (a) is

x (w) = H (No (wi0.and the total response in
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S(t a"" i• do

~ i(W) aiAt dwJ: 'F (T-ii d' (22)

The function H (w) is also the vehicle used to find the response to

a random excitation. Those relationships are mathematically easier to

perform by a superposition of elemental solutions in the time domain

rather than in the frequency domain. The relation batween transfer

funct ions in time and frequency ains is obtained as follows:

Let (t-) be the unit impulse app.ied at t - T and h (t-T) be the

impulse response function.Then the toal Tesponse to a continuous forcing

function fj (t) is

xj(t J f (T) h (t-T) dT (23)

Also, we know from the linear theory that the impulse response

function h and H (W) &-a r lated through

h (t) j f H (w) e'wt dt

(24)

H (W f h Wt eiwt dt

that is they are Fourier and inverse Fourier transforms of one another.

This is the desired relationship between transfer functions in the

time and frequency domains, assuming these transforms exist.

Some useful transfer functions are listed here:

(a) Force inp.t, displacement response

-1

H (w 2w (25)

ni j nj



(b) Force Input, acceleration response

-1 2

H (t) M -w I (26)

-- '227

H (w)22)
lni - w + 21mi j jW1

(d) Acceleration input, acceleration response

2
H (0) - 128)

w 2 + 21a w w

5. Respons* of a Single )5oruiil Kode to Random Forcie

Since a random vikwadion is not repeatable a time history of the

response of a structure to a random excitation is not very useful. Of

wsre interest is the Eoh!LitL of the severity of the structural

response to a given input during a time interval of interest. Knowing

the relationship between input and output, !.(w) or h(t), we can calculate

the statistical properties of the response if we know those of the input.

For a random process we suek the ffpc-ted value of the roeponse

assuming we know the expected value of the .Input. Thus we see',, from

Eq. (23), with e = t -

Ckj (01 ]11JrIffj (t-0) h 1(0) dO]

I f E £[f (t-0)] h (8) de (29)

where f is the only random variable.

9



We now define several terms which are useful in describing random

processes. A stationar- pocess x(t) is one having statistics which

do not change with time. If its probability density and all higher

order densities are inuopendent of tL', we call the process E

station . An eMgodic process is a raraom process for which ti.e

gTX , . f0 gcx(t)] dt (30)WT a

and ensemble a"Mes (another unm. for expected values) am equal.

All ergouic processes we stationary but not conversely.

If our random process is stationary then it follows from Eq. (29)

that

Ex (t)3 = Elfj (t)] J" hn () dO. (31)

By settiLg wz0 in Eq. (24) the value of the Aztegral in Eq, (31) can be

evaluated to obtain

E[x (t)3 H ) (0)Elfj (t)] (32)

This beccues

ECx (t)] ,1 2 Ef(3

fox displacesnt raspone to force input, from Eq. ("5).

The average value nf the product of a function of time with the same

fuction displaced T sec is called the autooorrolation function
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T
R() xTt+7. - lin fo X(t) x(t+T; _-: (341)

to distigumish it from the aorsoorrelation function g1 (t) g2 (t+r).

R(t) is particularily im.portant because it forms the link with the

frequency - component methods of description.

For an ergodic process we can also write R() as an enamble

average (expected value) called the covariance function

() a Flx(t) x(t )]. (3)

For an ergodic process R(T) has the following properties: (a) R(O) a x2

(b) R(-r) - R(), 'that is R is an even functionj (c) R(O) S IN(.-)l for

all T,

The relationship between R(-) and the frequency - component descrip-

tion of a randcm function (the secMtral deBLity) is developed in the

same manner as that relatimg h i(t) and H (w) in Section a. A sufficient

condition for the existence of the Fourier transform of R(,) is

-4jR('rI dr

IThe Fourier transform O(W) of the autocorrelation function of an ergodic

process is called the spetval density defined via

S(W) a f R('r) I7N dr (36)

(comrare with Eq. (24))

and the inversion of Eq. (36) is

R .1). fSoo eOT 4w (37)

B Eq. (37) it is clear thaL the fuar. square value of the random variable
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is related to the spectral density by

[xt]2 R(O) f-S(#;) dw. (38)

A nuzbar of properties of S(W) are deducible from its definition:

(a) S(w) is even; (b) S(W) is real and positive; (c) the average power

dissipated in a one ohm resistor by those frequency components of a

voltage x(t) lying in a band between w and w + do is 2S(w) do

(the units of S(W) are power/ cycle/second).

If Sj(w) is the spectral density of the random forcing function

f1 (t) of Eq, (17) then it follows (see Aseltine (]) that

j&j(w) - Il:(N) 12 sj(w) (3g)

For an ergodic pm -As aj it follows from the previous remarks

that the haan squL.. srpos. is

E[xj2 = Exj t)] - R(O)

f i Si(w)1 dii )dw (0

The values E[x 1, Eq. (32), and the root mean square response

(x,) ,. (E[xj1)2] " define the ave ag properties of z nesponse.

The variation of the response from these average values is given by

the variance, Eq. (13)0

2 Ex2 2a • - ly )",

whose square root is the standard deviation.

12



6. Probability Distributions

The comw1ete des~ription of a ---ad=m process requires tho

selection of a yrobabili -y distribution. This is usually done by

preseci'aAng the probability density function pWx. For the vibration

environment of vehicles the actual distribution could be deteimined

by extensive processing of recorded operatioal data couple*d with

investigations of the sources of excitation. Investigations of these

types have not yet led to definite general conclus ions on the nature

of the probability distributions. For the purpose of wont structure

and vehicle vibr'ation tests "~ responses to randoms vibration the

Gaussian (Normal) distribution is most xomc~only chosen. Its density

function is

PWx X exp[ (ii - m) 2/2a 2 3 (41)

whore a 31 E(J and is the varianca.

A distribution which has been extensively used in the past two

decades ts the Weibull distribution (see Johnson and Leone [5), p.112)

px -M a ( ̂ -a ) C-1 exp[-(rX-.) c (42)

for x>a, b>06 c'>O. The cumulative distribution is

7()* W expE - (T~5..) (i43)

Note that if arnO, col. the Veibull distribution includes the exPonential

distribution

9(x) 0 expE e x], 8 1/b. (44.)
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II
The genaral applicability of the Gaussian distribution follows from

the Ceatral Limit Lheorem, One of many forms of that defolyre-Laplace

result is as followsz "Let the random variable x be distributed with

mean P and variance a2 (but with density function unknown), Then the

distribution of the saple mean i is closely approximated by the Gaussian

distribution with mean U end variance a 2/n when n is large." (Feller

[2]) Thus a pro=cess will be approximately Gaussian whenever the p-ccsss

results from the superposition of a large number of sub-processes in

which no single sub-process e'inates all others.

If the excitation randm proess fit) has a Gaussian dfr4+ribution

then the resnse x,(t) is also Gaussian. With the knowledge of

Gaussian response and the resulting statistics for x j(t) known the

probability that the response is below any desired level can be calcUated

from standard tables. For example, the probability that the absolute

value of the rsponse will not exceed the stankard deviation a is .68,

that it will not exceed 2a is .95 and that it will not exceed 3a is .999.

7. Typical Calculations

We turn now to the evahuation of the mean response E[x and the

mean square response E[x2], god several typical forcing functions.

Commonly, this input is specified in terms of its frequency limits,

spetral density, and mean value.

Mean Value of Response

The mean value of the response x (t) as a function of the mean value

of the input has been previously established as Eq. (32). Thus we have

a) mean displacement response to a force input:

EN x (t)] 1 Elf 1(t01 (4~5)

m i Wn
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b) mean displacement response to an acceleration input:

-1

EEx (t)] - = -- ECAj(03 646)
waj

c) mean acceleration response to sither a force or accelewa.ion

inpute

EE Izo (47)

Mean Sguar Response

If and w2 are the hazdwidth frequency limits for a particular

excitation function than the general expression for the mean square

response, from 1q. (40o)0 becoms

EEZ23 1 (92 iH (0)1 2  (0w) do (48)

2
lbr the case 6 (w S B £ constant ('1 6 /cps)

~xj 21 3 z o 2 2 22 (9)S2w a j a~ ()2 + 40j 0 nj 2

is the mean square dispLacement response to a constant force input.

If the excitation is of the form SY(w) = Ao( "

c.2. 1 ;1.. (50)
2j w 2 2 2 4.'j it, + 2wnj ( 2 + 0 nj

is the wean square acceleration response to a varying force input.
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Similar expressi-n are obtainable for other mean squa-e responses.

The inttgrals can be evaluated in tore of elementary functions.

8. 1Meazes. of a Cmplex Structur to Raniom Excitation

The solutions of the random responses of each nomal mode must now

be combined to yield the random response of the multi-degree of freedom

system. Modal (fj) and physical forcing functions (F ) are related

by the equation (see Eq. (16))

f * r (51)

where #Ji are tha elements of *T. Thus we have

E =f #J, ELF i ]  (52)

that is the mean value of the modal forcing function is directly

computable in teims of the mean values of the physical forcing

functions. Equation (52) again follows from the linearity of the

expectation operator.

The reletionahip between the physical and modal spectral

densities. used in our preovoua work, is more complex. From specific

forms of Eq. (38) the i-elationship between input force and input

spectral density is

EFi2(t)] " 1 2  (w) d (53)
iW

and in the modal plane

ECf 2 (t)] Sj (w) dw (54)
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Since

f -it F (55)

then

E[fj ELFr2] I +F F (56)

Using Eqs. (55) and (56) it follows from Eq. (40,, for ergodic processes,

that

S (W , ), ,j [,,(w,,e) § (wje)) / 2  (57)

whe e 0 is the phase angle of the excitatio.

9. From Modal Response to Physical Response

In general X #x or in component form

xi O j xj, (58)

Consequ - '.y the mean physical response is

Ek"×i) X n- i ~ (59)

and the mean square response is

£LX 1
2 ] = n 2 E[xj2] + l l E[XIxkJ. (60)

i , *ij X .1 i'l j kik

if jand xk are independent the quantity ENxjxk] ov (xjxk) O,

in which case

ELX 2 ] n = *J2 Ex 1
2]. (61)
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This situation occurs suf ciently often to be of interest in

real applications. Finally,

2 E[xi 2 ) M i (62)
ai (X EX

Since the relationship between physical and modal acceleration is

n

the steps outlined above are repeatable for the acceleration response

of the linear system.

Other atatistical considerations also play an important role in

this Theais Project and therefore will be the subject of additional

sunary reports, These include fatimu damage criteria for structures

undr rando, excitation, the reponse of oontinuous (rather than lumped)

structiu to random excitation and the optimization of lmped parameter

and continuous dynamic stm under random excitation.
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